9 12 15 18 21
Question
9. IfA-thirteen, 6, nine, 12, 15, xviii, 21), B 14, 8, 12, 16, 20 ),C= { 2, 4, 6, 8, 10, 12, 14, xvi }, D= {5, 10, 15, 20 }; observe(G) A - B(v) C-A(vi) D(ix)A-C-AD-B(ii) A D 4) B-A(vii) B- C 5) B D(ii)Vi1ViliC-B(ten)
Open in App
Solution
Given, A = { iii , vi , 9 , 12 , fifteen , xviii , 21 } , B = { 4 , 8 , 12 , xvi , 20 } , C = { 2 , 4 , 6 , 8 , ten , 12 , 14 , 16 } and D = { 5 , 10 , 15 , 20 } .
(i)
A − B means that the set contains elements of set A just not of set B .
So, set A − B can be expressed as
A − B = A − ( A ∩ B ) = { 3 , 6 , 9 , 12 , 15 , 18 , 21 } − ( { 3 , six , ix , 12 , 15 , 18 , 21 } ∩ { 4 , eight , 12 , 16 , twenty } ) = { three , six , ix , 12 , 15 , 18 , 21 } − { 12 } = { 3 , six , 9 , fifteen , 18 , 21 }
Hence, A − B = { 3 , 6 , nine , 15 , 18 , 21 } .
(ii)
A − C means that the set contains elements of set A but non of set C .
So, prepare A − C tin exist expressed as
A − C = A − ( A ∩ C ) = { 3 , 6 , ix , 12 , fifteen , 18 , 21 } − ( { 3 , vi , 9 , 12 , xv , 18 , 21 } ∩ { 2 , four , 6 , eight , ten , 12 , xiv , 16 } ) = { 3 , 6 , 9 , 12 , xv , 18 , 21 } − { 6 , 12 } = { 3 , 9 , 15 , 18 , 21 }
Hence, A − C = { 3 , ix , 15 , 18 , 21 } .
(iii)
A − D means that the set contains elements of fix A simply not of ready D .
So, set A − D can exist expressed as
A − D = A − ( A ∩ D ) = { 3 , 6 , 9 , 12 , 15 , eighteen , 21 } − ( { 3 , 6 , nine , 12 , fifteen , eighteen , 21 } ∩ { five , 10 , 15 , 20 } ) = { 3 , 6 , 9 , 12 , 15 , xviii , 21 } − { 15 } = { 3 , 6 , 9 , 12 , 18 , 21 }
Hence, A − D = { 3 , 6 , 9 , 12 , 18 , 21 } .
(iv)
B − A ways that the set contains elements of set B merely not of set A .
And so, set B − A can be expressed as
B − A = B − ( B ∩ A ) = { 4 , viii , 12 , xvi , 20 } − ( { 4 , 8 , 12 , sixteen , 20 } ∩ { 3 , 6 , 9 , 12 , 15 , eighteen , 21 } ) = { four , 8 , 12 , xvi , 20 } − { 12 } = { four , 8 , 16 , 20 }
Hence, B − A = { four , 8 , 16 , 20 } .
(5)
C − A means that the fix contains elements of set C but not of prepare A .
So, set C − A tin can be expressed every bit
C − A = C − ( C ∩ A ) = { ii , 4 , 6 , viii , ten , 12 , xiv , 16 } − ( { 2 , 4 , 6 , 8 , x , 12 , 14 , sixteen } ∩ { iii , 6 , 9 , 12 , 15 , xviii , 21 } ) = { 2 , iv , half-dozen , viii , 10 , 12 , fourteen , sixteen } − { half-dozen , 12 } = { two , 4 , 8 , 10 , 14 , 16 }
Hence, C − A = { 2 , 4 , 8 , x , 14 , 16 } .
(half dozen)
D − A means that the set contains elements of set D but non of set A .
So, set D − A tin can be expressed as
D − A = D − ( D ∩ A ) = { v , 10 , 15 , 20 } − ( { 5 , 10 , 15 , 20 } ∩ { iii , 6 , 9 , 12 , 15 , 18 , 21 } ) = { 5 , x , 15 , 20 } − { xv } = { five , 10 , 20 }
Hence, D − A = { 5 , x , 20 } .
(vii)
B − C ways that the set contains elements of set B but not of gear up C .
So, set B − C tin be expressed as
B − C = B − ( B ∩ C ) = { 4 , 8 , 12 , 16 , 20 } − ( { 4 , viii , 12 , 16 , twenty } ∩ { ii , 4 , 6 , 8 , 10 , 12 , 14 , 16 } ) = { 4 , 8 , 12 , 16 , 20 } − { 4 , 8 , 12 , sixteen } = { 20 }
Hence, B − C = { 20 } .
(viii)
B − D ways that the ready contains elements of set up B merely not of set D .
And so, set B − D can be expressed as
B − D = B − ( B ∩ D ) = { four , eight , 12 , 16 , twenty } − ( { iv , 8 , 12 , 16 , xx } ∩ { 5 , 10 , 15 , 20 } ) = { 4 , 8 , 12 , 16 , 20 } − { xx } = { 4 , viii , 12 , 16 }
Hence, B − D = { 4 , 8 , 12 , sixteen } .
(ix)
C − B means that the set contains elements of set C simply not of prepare B .
So, ready C − B can exist expressed as
C − B = C − ( B ∩ C ) = { two , 4 , 6 , 8 , ten , 12 , 14 , sixteen } − ( { 4 , 8 , 12 , 16 , 20 } ∩ { 2 , 4 , vi , 8 , ten , 12 , 14 , sixteen } ) = { 2 , 4 , 6 , 8 , 10 , 12 , xiv , 16 } − { 4 , 8 , 12 , 16 } = { 2 , six , x , fourteen }
Hence, C − B = { 2 , 6 , 10 , 14 } .
(10)
D − B ways that the prepare contains elements of set D only non of set B .
So, set D − B can be expressed as
D − B = D − ( B ∩ D ) = { 5 , 10 , fifteen , 20 } − ( { 4 , 8 , 12 , 16 , 20 } ∩ { 5 , 10 , 15 , 20 } ) = { 5 , ten , 15 , 20 } − { xx } = { five , ten , 15 }
Hence, D − B = { five , x , 15 } .
(xi)
C − D ways that the set contains elements of set C simply not of prepare D .
Then, set C − D tin can be expressed every bit
C − D = C − ( C ∩ D ) = { two , four , 6 , 8 , x , 12 , 14 , 16 } − ( { 2 , 4 , 6 , 8 , x , 12 , 14 , 16 } ∩ { v , 10 , fifteen , 20 } ) = { ii , 4 , 6 , eight , 10 , 12 , fourteen , 16 } − { 10 } = { 2 , iv , 6 , viii , 12 , 14 , xvi }
Hence, C − D = { ii , 4 , 6 , viii , 12 , 14 , 16 } .
(xii)
D − C means that the set contains elements of set up D but not of set C .
So, prepare D − C tin can be expressed every bit
D − C = D − ( C ∩ D ) = { 2 , 4 , 6 , viii , 10 , 12 , 14 , 16 } − ( { 2 , 4 , 6 , 8 , 10 , 12 , 14 , sixteen } ∩ { 5 , x , xv , twenty } ) = { 5 , x , 15 , twenty } − { x } = { five , 15 , 20 }
Hence, D − C = { 5 , fifteen , twenty } .
Given,
(i)
So, set
Hence,
(ii)
So, prepare
Hence,
(iii)
So, set
Hence,
(iv)
And so, set
Hence,
(5)
So, set
Hence,
(half dozen)
So, set
Hence,
(vii)
So, set
Hence,
(viii)
And so, set
Hence,
(ix)
So, ready
Hence,
(10)
So, set
Hence,
(xi)
Then, set
Hence,
(xii)
So, prepare
Hence,
9 12 15 18 21,
Source: https://byjus.com/question-answer/9-ifa-13-6-9-12-15-18-21-b-14-8-12-16-20/
Posted by: upshawwishoune1988.blogspot.com
0 Response to "9 12 15 18 21"
Post a Comment